Unit 11 Coordinate Geometry (PART I) Summary Sheet

1. Slope formula

Midpoint Formula___

Distance Formula

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$Midpoint = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

BACKWARDS MIDPOINT

Line up points and do arithmetic (add/sub)

2. <u>Partition:</u> If you want to partition a segment into an a:b ratio, divide rise and run by a+b and count!

Example shown: the segment shown is broken into a 2:3 ratio.

$$\left(x_1 + \left(\frac{a}{a+b}\right) \cdot (x_2 - x_1), \ y_1 + \left(\frac{a}{a+b}\right) \cdot (y_2 - y_1)\right)$$

3. Equations of a line

Point Slope Form

[if you know a point and the slope, use this form]

$$y - y_1 = m(x - x_1)$$

$$m = slope$$

$$(x_1, y_1)_{=\text{ any point on the line}}$$

10 B B (2,7) 6 7 FISE 15 A 6 8 10 P 2 4 6 8 10 Mathetics

parallel lines have the same slopes! perpendicular lines have negative reciprocal slopes! Equation of a PERPENDICULAR BISECTOR:

STEP 1: Find slope of given segment (then determine negative reciprocal to use in equation of line)

STEP 2: Find midpoint using midpoint formula (use as x₁ and y₁ in equation of line)

STEP 3: Plug negative reciprocal slope (step 1) and midpoint (step 2) into $y - y_1 = m(x - x_1)$

4. Perimeter of a polygon on a graph: Use distance formula for ALL SIDES then add.

Given $\triangle ABC$, A (-3,4) B (1,7) C (7,-1), determine the perimeter.

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\sqrt{(1 - (-3))^2 + (7 - 4)^2} \qquad \sqrt{(7 - 1)^2 + ((-1) - 7)^2}$$

$$\sqrt{(4)^2 + (3)^2} \qquad \sqrt{(6)^2 + (-8)^2}$$

$$\sqrt{16 + 9} = \sqrt{25} = 5 \qquad \sqrt{36 + 64} = \sqrt{100} = 10$$

$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

$$\sqrt{((-5) - 7)^2 + (4 - (-1))^2}$$

$$\sqrt{(-10)^2 + (5)^2}$$

$$\sqrt{100 + 25} = \sqrt{125} = 5\sqrt{5}$$

The perimeter of $\triangle ABC$ is $15 + 5\sqrt{5} \approx 26.18$ cm.

Area of a polygon on a graph: Box method

Step 1: Draw a box around the polygon

Step 2: Number sections created (must be able to count base and height)

Step 3: Find area of box

Step 4: Find area of all numbered sections (then add together)

Step 5: Area of Box – Sum of Numbered sections

