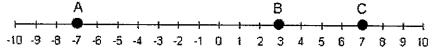
Geometry

Unit 1-4

Segments, Angles and Triangles

Geome	try			
Unit 1-4 Segments, Angles and Triangles				
Lesson 1: Segments	pages 1-3	HW page 4		
Lesson 2: Angles and Angle Pairs	pages 5-9	HW pages 10-11		
Lesson 3: Intersecting Lines and Parallel Lines Crossed by a Transversal Lesson 4: Triangle Properties	pages 12-16	HW pages 17-18		
Lines Crossed by a Transversal				
Lesson 4: Triangle Properties	pages 19-21	HW page 22		
Lesson 5: Triangle Inequalities	pages 23-26	HW pages 27-28		
Lesson 6: Exterior Angle Theorem	pages 29-32	HW page 33		
Lesson 6: Exterior Angle Theorem Lesson 7: Isosceles Triangles	pages 34-36	HW page 37		
)))				
ง 5 5 5				
Ď Ď Ď Ďy popologický popologický popologický popologický popologický popologický popologický popologický popologický				
NO COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC				

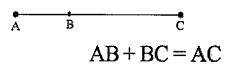
Lesson 1: Segments


Definition:

A segment (or line segment) is a part of a line that is bounded by two distinct end points. It contains every point on the line between its end points.

Ruler Postulate

Ruler Postulate: The points on a line can be put into a one-to-one correspondence (paired) with the real numbers. The distance between any two points is represented by the absolute value of the difference between the numbers. [Keep in mind that distances are always positive.]

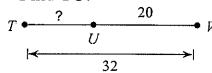

Example 1

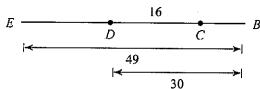
- a) The distance between A and B is _____
- b) The distance between A and C is
- c) The distance between B and C is _____

Segment Addition Postulate

Statement: If B lies on the segment from A to C, then AB + BC = AC. Also the converse: If AB + BC = AC, then B lies on the segment from A to C.

Example 2: Find IK.




Example 3:

Find TU.

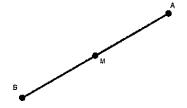
Example 4:

Find EC

Example 5:

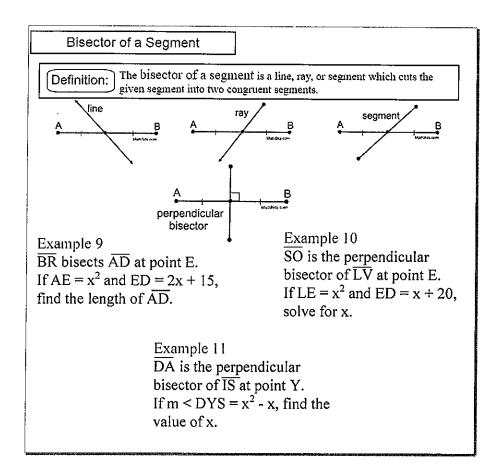
Points A, B, and C are collinear. Point B is between A and C.

- a) Find AC if AB = 16 and BC = 12.
- b) Find AB if AC = 20 and CB = 6.
- c) AC = 22, BC = x + 14, and AB = x + 10. Find x.


Midpoint of a Segment

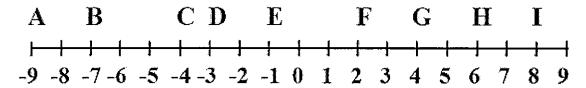
Definition:

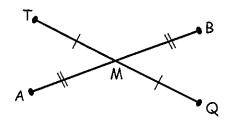
The midpoint of a segment is a point on the segment forming two congruent segments.


Example 6:

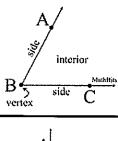
If M is the midpoint of \overline{BA} , and MA = 6 what is BA?

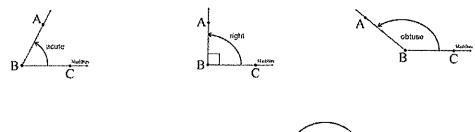
Example 7: A is the midpoint of \overline{CT} . If CA = 2x + 1 and AT = x + 6, find CT.


Example 8: O is the midpoint of \overline{DG} . If $\overline{DO} = x + 6$ and DG = 4x + 11, find OG.


Date _______Unit 4 Lesson 1: Segments HOMEWORK

Geometry CC


Use the diagram below to answer the questions 1-4. Show the calculation that you used to obtain your answer.



- 1. What is the distance between points C and H?
- 2. What is the distance between points I and A?
- 3. What is the distance between points G and C?
- 4. What is the distance between points B and G?
- 5. Solve for x. $S = \frac{13}{T} = \frac{6}{U}$ |4x-29|
- 6. A is the midpoint of \overline{CR} . If CA = x + 4 and $AR = \frac{2}{3}x + 5$, find the length of \overline{CR} .
- 7. E is the midpoint of \overline{DN} . If DN = x^2 and DE = x + 24. Solve for the positive value of x.
- 8. If AM = 5y 1, AB = 38, find the value of y.

Lesson 2: Angles and Angle Pairs

Pairs of Angles

• Adjacent Angles are two angles that share a common vertex, a common side, and no common interior points. (They share a vertex and side, but do not overlap.)

Draw a picture

• A Linear Pair is two adjacent angles whose non-common sides form opposite rays.

Draw a picture

• Complementary Angles are two angles the sum of whose measures is 90°. Draw a picture

• Supplementary Angles are two angles the sum of whose measures is 180°. Draw a picture

Working With Angles

Angle Addition Postulate

If D lies in the interior of $\angle ABC$, then $m\angle ABD + m\angle DBC = m\angle ABC$.

Draw a picture

Angle Bisector

Definition: An angle bisector is a ray from the vertex of the angle into the interior of the angle forming two congruent angles.

Draw a picture

Angles Forming a Straight Line

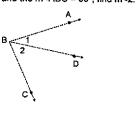
If the non-shared sides of two, or more, adjacent angles form a straight line, the measures of the angles add up to 180°.

Draw a picture

Angles Around a Point

If two, or more, adjacent angles completely surround a point, the measures of the angles add up to 360°.

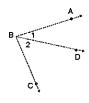
Draw a picture


Example 1:

If the $m<1 = 35^{\circ}$ and the $m<2 = 40^{\circ}$, find the m<ABC.

Example 2:

If the m<1 = 20° and the m<ABC = 65°, find m<2.


Example 3:

If the m<1 = (3x+5)°, the m<2 = (x+10)° and the m<ABC = 95°, find the m<2.

Example 4:

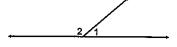
If m<1:m<2 is 2:3 and the m<ABC is 45°, find the m<1.

Example 5:

<ABC is a right angle. If m<ABC = $(x^2 - 43x)^{\circ}$, find the positive value of x.

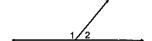
Example 6:

If AB_LBC and m<1 = 2x + 40 and m<2 = 4x - 10, find the measure of both angles.


Example 7:

a) What is the complement of an angle that measures 30°?

b) An angle measures 15 more than twice its complement. Find both angles.



If the m<1 = 45°, find m<2.

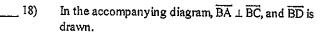
Example 9:

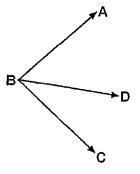
If the $m<1 = (2x + 40)^{\circ}$ and the $m<2 = (3x - 10)^{\circ}$, find m<1.

Example 10:

Find the supplement of a 73° angle.

Example 11:

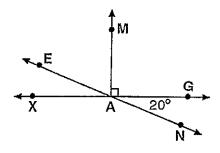

Two angles are supplementary. The measure of the larger angle is twice the measure of the smaller angle. Find the measure of the larger angle.

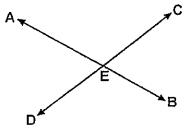

Example 12:

- 1. The complement of 3x 20 is ______.
- 2. The supplement of 20-8x is _____

Name: _ Pairs of A	Angles Practice			
estion	ns 1 through 3 refer to the following:	6	Find the measure of the supplement of 60°.	
	B C	?	Two complementary angles have measures in 2:4. What is the measure of the <i>larger</i> angle? A) 80° C) 60° B) 120° D) 30°	the ratio
i)	If $m\angle CBD = 20^{\circ}$ and $m\angle DBE = 45^{\circ}$, find $m\angle EBC$.	8)	The measures of two supplementary angles ar ratio 2:7. Find the measure of the smaller angle	re in the
			A) 90° C) 70° B) 40° D) 20°	
2)	If $m\angle ABD = 70^{\circ}$, $m\angle EBD = 40^{\circ}$, find $m\angle ABE$.	9)	∠A and ∠B are supplementary and the measur is 5 less than four times ∠A. Find m∠A.	e of∠B
3)	If BE bisects ∠ABD and m∠ABD = 66°, find m∠ABE.			
4)	Find the measure of the complement of 60°.	10)	$\angle A$ and $\angle B$ are complementary and the measur is 2 more than three times the measure of $\angle A$. Find $m\angle B$.	re of∠B
5)	Find the measure of the supplement of 120°.	11)	Is 64° an acute angle, right angle, obtuse angle straight angle?	e, or

- ____ 12) Is 145° an acute angle, right angle, obtuse angle, or straight angle?
- _ 17) $\angle 1$ and $\angle 2$ are complementary. If $m\angle 1 = (x+3)^\circ$ and $m\angle 2 = (4x-8)^\circ$, find the value of x.
- ____ 13) Is 180° an acute angle, right angle, obtuse angle, or straight angle?



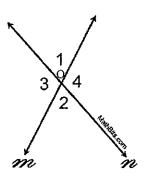

If $m\angle ABD = (2x + 18)^{\circ}$ and $m\angle CBD = (4x - 18)^{\circ}$, find x.

Questions 14 and 15 refer to the following:

In the diagram below, \overline{XG} and \overline{EN} intersect at A, $\overline{AM} \perp \overline{XG}$, and $m\angle GAN = 20^{\circ}$.

__ 19) In the accompanying diagram, AB and CD intersect at E.

If $m\angle AEC = (2x + 40)^{\circ}$ and $m\angle CEB = (x + 20)^{\circ}$, find x.


- ____ 14) Name an angle adjacent to ∠MAG.
- ____15) Find the measure of the supplement of ∠EAG.
- 16) $\angle 1$ and $\angle 2$ are supplementary. If $m\angle 1 = (3x 17)^\circ$ and $m\angle 2 = (5x + 21)^\circ$, find the value of x.

Lesson 3

Intersecting Lines and Parallel lines Crossed by a Transversal

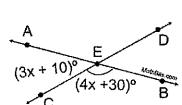
Definition:

Vertical angles are a pair of non-adjacent angles formed by the intersection of two straight line.

Example 1

Given:

straight lines m and n


Find the number of degrees in the indicated angles.

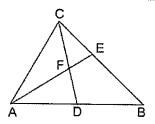
Given:

 \overline{AB} and \overline{CD}

Find: *m∠DEB*

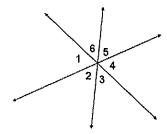
Example 3

Given:

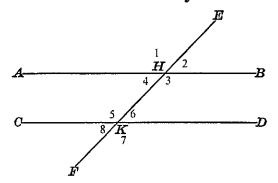

 \overline{CD} bisects $\angle ACB$

 \overline{AE} bisects $\angle CAB$

 $m\angle ACB = 48^{\circ}$

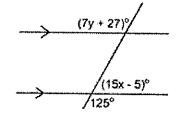

 $m\angle CAB = 56^{\circ}$

Find: *m∠CFA*; *m∠EFD m∠AFD*; *m∠CFE*

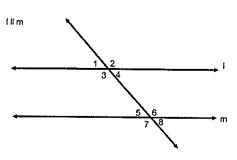


Example 4

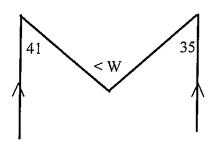
If $m < 1 = 114^{\circ}$ and $m < 6 = 36^{\circ}$, find the measure of all other angles.



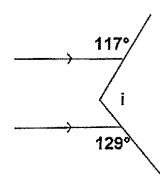
Parallel Lines Crossed by a Transversal


Vertical Angles	
Linear Pairs	
Corresponding Angles	
Alternate Interior Angles	
Alternate Exterior Angles	
Same Side Interior Angles	
Same Side Exterior Angles	

Example 5 Solve for x and y

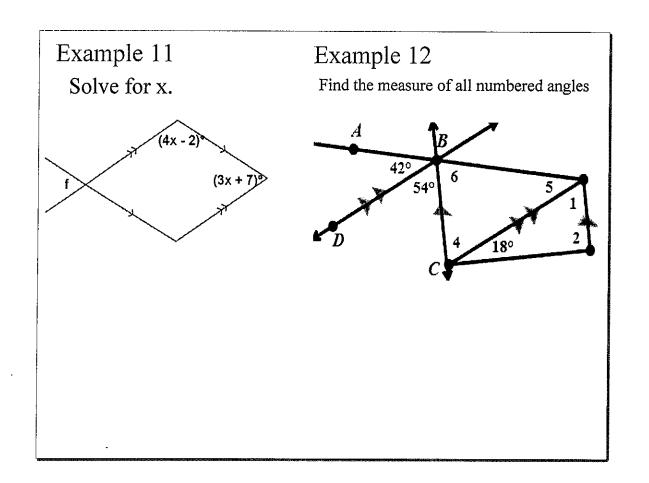

Example 6:

If $m<1=(5n)^{\circ}$ and $m<8=(2n+66)^{\circ}$, find n.

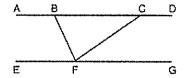

Example 7

Find the measure of <W.

Example 8


Find the measure of < i.

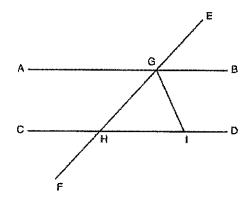
In geometry, it may be necessary to add a line or segment to a diagram to help in solving a problem or proving a concept. Such an added line or segment is called an auxiliary line. The word "auxiliary" means providing additional help or support.


Example 9
Find the measure of < d.

Example 10
Find the measure of < b and < c.

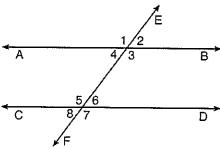
Example 13

Steve drew line segments ABCD, EFG, BF, and CF as shown in the diagram below. Scalene $\triangle BFC$ is formed.

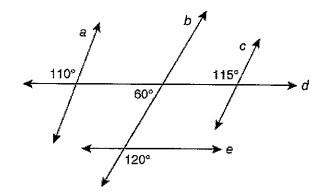


Which statement will allow Steve to prove

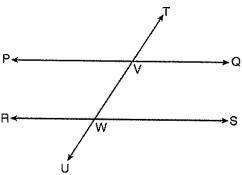
- $\overline{ABCD} \parallel \overline{EFG}?$
- $1 \quad \angle CFG \cong \angle FCB$
- 2 ∠ABF ≡ ∠BFC
- 3 ∠EFB ≅ ∠CFB
 4 ∠CBF ≅ ∠GFC


Example 14

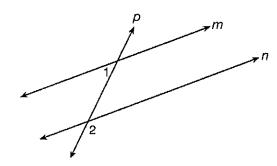
In the diagram below, \overline{EF} intersects \overline{AB} and \overline{CD} at \overline{G} and \overline{H} , respectively, and \overline{GI} is drawn such that $\overline{GH} \cong \overline{IH}$.


If $m\angle EGB = 50^{\circ}$ and $m\angle DIG = 115^{\circ}$, explain why $\overline{AB} \parallel \overline{CD}$.

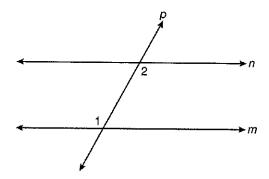
1 Transversal \overrightarrow{EF} intersects \overrightarrow{AB} and \overrightarrow{CD} , as shown in the diagram below.


Which statement could always be used to prove \longleftrightarrow $AB \parallel CD$?

- 1) ∠2 ≅ ∠4
- 2) ∠7 ≅ ∠8
- 3) $\angle 3$ and $\angle 6$ are supplementary
- 4) ∠1 and ∠5 are supplementary
- 2 A transversal intersects two lines. Which condition would always make the two lines parallel?
 - 1) Vertical angles are congruent.
 - 2) Alternate interior angles are congruent.
 - 3) Corresponding angles are supplementary.
 - 4) Same-side interior angles are complementary.
- 3 Based on the diagram below, which statement is true?

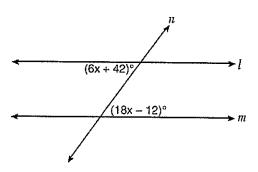

- 1) a | b
- 2) a c
- 3) b || c
- 4) d e

4 In the diagram below, transversal \overrightarrow{TU} intersects \overrightarrow{PQ} and \overrightarrow{RS} at V and W, respectively.

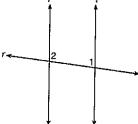

If $m\angle TVQ = 5x - 22$ and $m\angle VWS = 3x + 10$, for which value of x is $PQ \parallel RS$?

5 As shown in the diagram below, lines m and n are cut by transversal p.

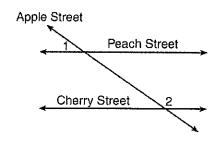
If $m\angle 1 = 4x + 14$ and $m\angle 2 = 8x + 10$, lines m and n are parallel when x equals what number?


6 In the diagram below, line p intersects line m and line n.

If $m\angle 1 = 7x$ and $m\angle 2 = 5x + 30$, lines m and n are parallel when x equals

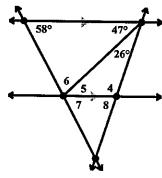

- 1) 12.5
- 2) 15
- 3) 87.5
- 4) 105

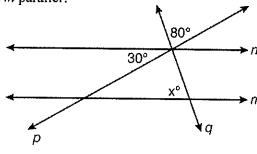
7 Line n intersects lines l and m, forming the angles shown in the diagram below.



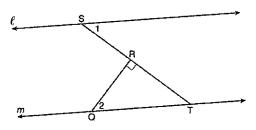
Which value of x would prove $l \parallel m$?

- 1) 2.5
- 2) 4.5
- 3) 6.25
- 4) 8.75
- 8 Lines p and q are intersected by line r, as shown below. If $m \angle 1 = 7x - 36$ and $m \angle 2 = 5x + 12$, for which value of x would $p \parallel q$?
 - 1) 17
 - 2) 24
 - 3) 83
 - 4) 97

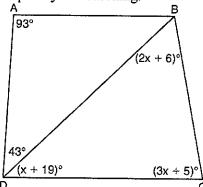

9 Peach Street and Cherry Street are parallel. Apple Street intersects them, as shown in the diagram below. If $m\angle 1 = 2x + 36$ and $m\angle 2 = 7x - 9$, what is $m\angle 1$?

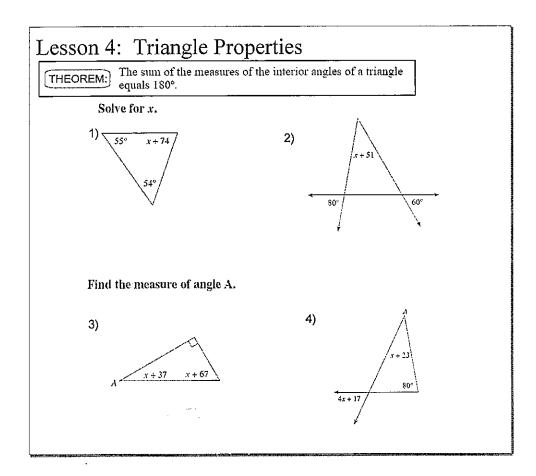

In the diagram below, line ℓ is parallel to line m, and line w is a transversal.

(Not drawn to scale)


11. Determine the measures of all numbered angles

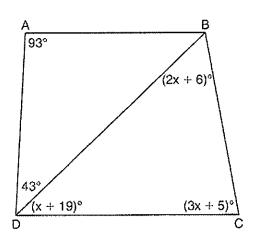
In the diagram below, lines n and m are cut by transversals p and q. What value of x would make lines p and p parallel?




- 1) 110
- 2) 80
- 3) 70
- 4) 50
- 13 In the diagram below, $\ell \parallel m$ and $\overline{QR} \perp \overline{ST}$ at R.

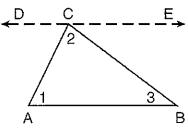
If $m\angle 1 = 63$, find $m\angle 2$.

14 In the diagram below of quadrilateral ABCD with diagonal \overline{BD} , $m\angle A = 93$, $m\angle ADB = 43$, $m\angle C = 3x + 5$, $m\angle BDC = x + 19$, and $m\angle DBC = 2x + 6$. Determine if \overline{AB} is parallel to \overline{DC} . Explain your reasoning.



Example 5:

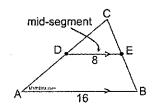
In the diagram below of quadrilateral ABCD with diagonal \overline{BD} , m < A = 93, m < ADB = 43, m < C = 3x + 5, m < BDC = x + 19 and m < DBC = 2x + 6.


Determine if \overline{AB} is parallel to \overline{DC} . Explain your reasoning.

Example 6

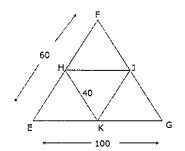
Prove the theorem,

"The sum of the measures of the interior angles of a triangle is 180°."



Given: \triangle ABC

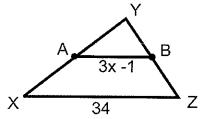
Prove: m<1 + m<2 + m<3 = 180


THEOREM:

"Mid-Segment Theorem": The mid-segment of a triangle, which joins the midpoints of two sides of a triangle, is parallel to the third side of the triangle and half the length of that third side of the triangle.

Example 7

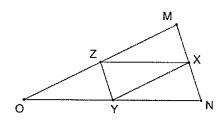
In ΔEFG , H, J, and K are midpoints. Find HJ, JK, and FG.



HJ: JK:

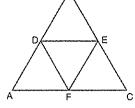
FG:

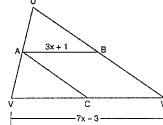
Example 8

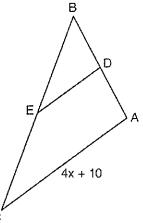

If A and B are midpoints of \overline{XY} and \overline{YZ} , solve for x:

Example 9

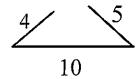
Given Z, X, and Y are midpoints of \overline{OM} , \overline{MN} , and \overline{ON} .


If YZ = 2x + 3, and MN = 5x - 14, then YZ =


Lesson 4 Triangle Properties HW


Geometry CC

- 1. The angles of triangle ABC are in the ratio of 8:3:4. What is the measure of the smallest angle?
 - 1) 12°
 - 2) 24°
 - 3) 36°
 - 4) 72°
- 2. In $\triangle ABC$, $m\angle A = 3x + 1$, $m\angle B = 4x 17$, and $m\angle C = 5x 20$. Which type of triangle is $\triangle ABC$?
 - 1) right
 - 2) scalene
 - 3) isosceles
 - 4) equilateral
- 3. Juliann plans on drawing $\triangle ABC$, where the measure of $\angle A$ can range from 50° to 60° and the measure of $\angle B$ can range from 90° to 100°. Given these conditions, what is the correct range of measures possible for $\angle C$?
 - 1) 20° to 40°
 - 2) 30° to 50°
 - 3) 80° to 90°
 - 4) 120° to 130°
- 4. In right $\triangle DEF$, $m\angle D = 90$ and $m\angle F$ is 12 degrees less than twice $m\angle E$. Find $m\angle E$.
- 5. In $\triangle ABC$, the measure of angle A is fifteen less than twice the measure of angle B. The measure of angle C equals the sum of the measures of angle A and angle B. Determine the measure of angle B.
- 6. In the diagram below, the vertices of $\triangle DEF$ are the midpoints of the sides of equilateral triangle ABC, and the perimeter of $\triangle ABC$ is 36 cm.
 - What is the length, in centimeters, of \overline{EF} ?
 - 1) 6
 - 2) 12
 - 3) 18
 - 4) 4



- 7. In the diagram of $\triangle ABC$, D is the midpoint of \overline{AB} , and E is the midpoint of \overline{BC} . If AC = 4x + 10, which expression represents DE?
 - 1) x + 2.5
 - 2) 2x + 5
 - 3) 2x + 10
 - 4) 8x + 20
- 8. In the diagram of $\triangle UVW$ below, A is the midpoint of \overline{UV} , B is the midpoint of \overline{UW} , C is the midpoint of \overline{VW} , and \overline{AB} and \overline{AC} are drawn.
 - If VW = 7x 3 and AB = 3x + 1, what is the length of \overline{VC} ?

Lesson 5 Triangle Inequalities

THEOREM:

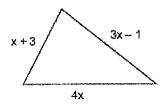
The sum of the lengths of any two sides of a triangle must be greater than the third side.

Example 1

Which sets of numbers could represent the lengths of the sides of a triangle?

{4, 5, 6}

{5, 12, 13}


{8, 9, 17}

{2, 10, 13, }

{7, 7, 14}

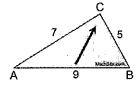
Example 2

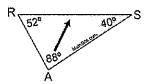
The plot of land illustrated in the accompanying diagram has a perimeter of 34 yards. Find the length, in yards, of *each* side of the figure. Could these measures actually represent the measures of the sides of a triangle? Explain your answer.

Determine the possible lengths of 3rd side of a TRIANGLE

5, 7, ____

The third side of a triangle must be...


- Less than the sum of the other two sides
 - AND
- Greater than the difference of the other two sides


Examples:

- 3. If two sides of a triangle have length 8 and 4, what are possible lengths of the 3rd side?
- 4. If two sides of a triangle have length 3 and 12, what are possible lengths of the 3rd side?

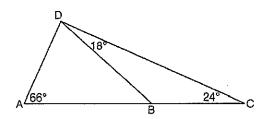
THEOREM: In a triangle, the longest side is across from the largest angle.

Converse: In a triangle, the largest angle is across from the longest side.

Example 5

In $\triangle ABC$, $m\angle A = 95$, $m\angle B = 50$, and $m\angle C = 35$. Which expression correctly relates the lengths of the sides of this triangle?

- 1) AB < BC < CA
- 2) AB < AC < BC
- 3) AC < BC < AB
- $4) \quad BC < AC < AB$

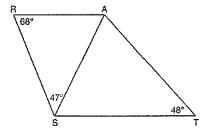

Example 6

In $\triangle ABC$, AB = 7, BC = 8, and AC = 9. Which list has the angles of $\triangle ABC$ in order from smallest to largest?

- ∠A, ∠B, ∠C
- ∠B, ∠A, ∠C
- 3) $\angle C, \angle B, \angle A$
- 4) ∠C,∠A,∠B

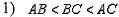
Example 7

As shown in the diagram of $\triangle ACD$ below, B is a point on \overline{AC} and \overline{DB} is drawn.


If $m\angle A = 66$, $m\angle CDB = 18$, and $m\angle C = 24$, what is the longest side of $\triangle ABD$?

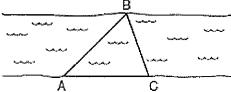
Example 8

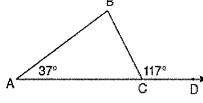
In $\triangle ABC$, $m\angle A = x^2 + 12$, $m\angle B = 11x + 5$, and $m\angle C = 13x - 17$. Determine the longest side of $\triangle ABC$.


Example 9

As shown in the diagram below, \overline{AS} is a diagonal of trapezoid STAR, $\overline{RA} \parallel \overline{ST}$, $m \angle ATS = 48$, $m \angle RSA = 47$, and $m \angle ARS = 68$.

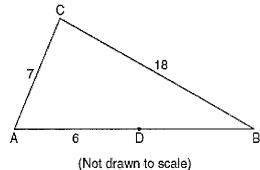
Determine and state the longest side of $\triangle SAT$.


1. On the banks of a river, surveyors marked locations A, B, and C. The measure of $\angle ACB = 70^{\circ}$ and the measure of $\angle ABC = 65^{\circ}$. Which expression shows the relationship between the lengths of the sides of this triangle?



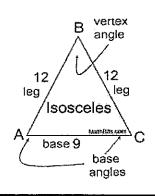
3)
$$BC < AC < AB$$

4)
$$AC < AB < BC$$



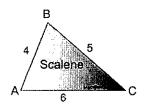
- 2. In scalene triangle ABC, $m \angle B = 45$ and $m \angle C = 55$. What is the order of the sides in length, from longest to shortest?
 - 1) $\overline{AB}, \overline{BC}, \overline{AC}$
 - 2) \overline{BC} , \overline{AC} , \overline{AB}
 - 3) \overline{AC} , \overline{BC} , \overline{AB}
 - 4) \overline{BC} , \overline{AB} , \overline{AC}
- 3. In $\triangle ABC$, $m\angle A = 65$ and $m\angle B$ is greater than $m\angle A$. The lengths of the sides of $\triangle ABC$ in order from smallest to largest are
 - 1) \overline{AB} , \overline{BC} , \overline{AC}
 - 2) \overline{BC} , \overline{AB} , \overline{AC}
 - 3) \overline{AC} , \overline{BC} , \overline{AB}
 - 4) \overline{AB} , \overline{AC} , \overline{BC}
- 4. In $\triangle PQR$, PQ = 8, QR = 12, and RP = 13. Which statement about the angles of $\triangle PQR$ must be true?
 - 1) $m\angle Q > m\angle P > m\angle R$
 - 2) $m\angle Q > m\angle R > m\angle P$
 - 3) $m\angle R > m\angle P > m\angle Q$
 - 4) $m\angle P > m\angle R > m\angle Q$
- 5. For which measures of the sides of $\triangle ABC$ is angle B the largest angle of the triangle?
 - 1) AB = 2, BC = 6, AC = 7
 - 2) AB = 6, BC = 12, AC = 8
 - 3) AB = 16, BC = 9, AC = 10
 - 4) AB = 18, BC = 14, AC = 5
- 6. In the diagram below of $\triangle ABC$ with side \overline{AC} extended through D, $m\angle A = 37$ and $m\angle BCD = 117$. Which side of $\triangle ABC$ is the longest side? Justify your answer.

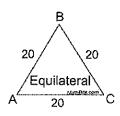
(Not drawn to scale)

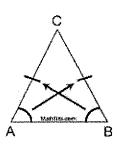

- 7. Which set of numbers represents the lengths of the sides of a triangle?
 - 1) {5, 18, 13}
 - 2) {6, 17, 22}
 - 3) {16, 24, 7}
 - 4) {26, 8, 15}
- 8. Phil is cutting a triangular piece of tile. If the triangle is scalene, which set of numbers could represent the lengths of the sides?
 - 1) {2,4,7}
 - 2) {4, 5, 6}
 - 3) {3,5,8}
 - 4) {5, 5, 8}
- 9. Which set can not represent the lengths of the sides of a triangle?
 - 1) {4,5,6}
 - 2) {5, 5, 11}
 - 3) {7,7,12}
 - 4) (8, 8, 8)
- 10. In $\triangle ABC$, AB = 5 feet and BC = 3 feet. Which inequality represents all possible values for the length of \overline{AC} , in feet?
 - 1) $2 \le AC \le 8$
 - 2) 2 < AC < 8
 - 3) $3 \le AC \le 7$
 - 4) 3 < AC < 7
- 11. The lengths of two sides of a triangle are 7 and 11. Which inequality represents all possible values for x, the length of the third side of the triangle?
 - 1) $4 \le x \le 18$
 - 2) $4 < x \le 18$
 - 3) $4 \le x < 18$
 - 4) 4 < x < 18
- 12. If two sides of a triangle are 1 and 3, the third side may be
 - 1) 5
 - 2) 2
 - 3) 3
 - 4) 4
- 13. José wants to build a triangular pen for his pet rabbit. He has three lengths of boards already cut that measure 7 feet, 8 feet, and 16 feet. Explain why José cannot construct a pen in the shape of a triangle with sides of 7 feet, 8 feet, and 16 feet.
- 14. In the diagram below of $\triangle ABC$, D is a point on \overline{AB} , AC = 7, AD = 6, and BC = 18. The length of \overline{DB} could be
 - 1) 5
 - 2) 12
 - 3) 19
 - 4) 25

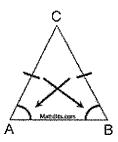
Lesson 7 Isosceles Triangles

Definition:

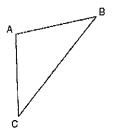

An isosceles triangle is a triangle with two congruent sides.



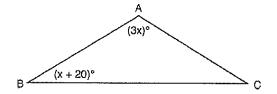




Theorem:


In a triangle, sides opposite congruent angles are congruent. In a triangle, angles opposite congruent sides are congruent.

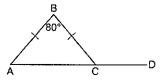
Examples:


1. In the diagram of $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, if m<B = 40°, what is m<A?

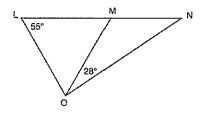
2. Given ΔJKL with $\overline{JL} \cong \overline{KL}$. If m<J = 58°, what is m<L?

Example 3:

In the diagram below of $\triangle ABC$, $\overline{AB} \cong \overline{AC}$, $m\angle A = 3x$, and $m\angle B = x + 20$.

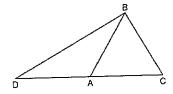

What is the value of x?

Example 4:

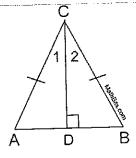

The vertex angle of an isosceles triangle measures 15 degrees more than one of its base angles. How many degrees are there in a base angle of the triangle?

Example 5:

In the diagram below of isosceles $\triangle ABC$, the measure of vertex angle B is 80°. If \overline{AC} extends to point D, what is $m \angle BCD$?


Example 6: In the diagram below, $\triangle LMO$ is isosceles with LO = MO.

If $m\angle L = 55$ and $m\angle NOM = 28$, what is $m\angle N$?


Example 7:

In the diagram of $\triangle BCD$ shown below, \overline{BA} is drawn from vertex B to point A on \overline{DC} , such that $\overline{BC} \cong \overline{BA}$.

In $\triangle DAB$, $m\angle D=x$, $m\angle DAB=5x-30$, and $m\angle DBA=3x-60$. In $\triangle ABC$, AB=6y-8 and BC = 4y - 2. [Only algebraic solutions can receive full credit.] Find $m\angle D$. Find $m\angle BAC$. Find the length of \overline{BC} . Find the length of \overline{DC} .

Altitudes in Isosceles Triangles

THEOREM: The altitude to the base of an isosceles triangle bisects the vertex angle.

THEOREM: The altitude to the base of an isosceles triangle bisects the base.

Example 8:

In $\triangle ABC$, $\overline{AB} \cong \overline{BC}$. An altitude is drawn from B to \overline{AC} and intersects \overline{AC} at D. Which conclusion is not always true?

- 1) $\angle ABD \cong \angle CBD$
- 2) $\angle BDA \cong \angle BDC$
- 3) $\overline{AD} \cong \overline{BD}$
- 4) $\overline{AD} \cong \overline{DC}$

Isosceles Triangles Practice

6. In $\triangle DEG$, $\overline{DE} \cong \overline{EG}$. An altitude is

drawn from point E to \overline{DG} and

ET = 2x + 10 and EM = x + 10MT = 3x - 10

Find MT.

5. $m\angle MET = m\angle EMT$

Geometr

intersects the side at H. Which of the following conclusions is NOT always

2) $\angle DHE \cong \angle GHE$ 4) $\overrightarrow{DH} \cong \overrightarrow{EH}$

1) $\angle DEH \cong \angle HEG$ 3) $\overline{DH} \cong \overline{HG}$

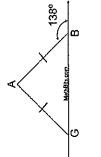
01 + X

true?

Directions: Read carefully! Please show your work

1. $\triangle ABC$ is isosceles where AC = CB. AC = 6a - 8 and CB = 4a - 2Find AC.

 $m\angle B = x + 10$ and $m\angle U = 3x$ 2. ABUG is isosceles.


 $(x + 10)^{\circ}$ Find $m \angle U$.

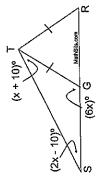
7. $\triangle GAB$ is isosceles. The exterior angle at point B measures 138°. Find $m\angle A$.

8. $\triangle CAB$ and $\triangle CTB$ are isosceles.

 $m\angle CTB = 87^{\circ}$ and $m\angle CAB = 65^{\circ}$.

Find mZACT.

9. $\triangle ABC$ is isosceles with AB = BC. Which of the following statements is always true?

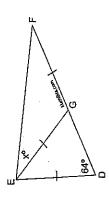

1) $m\angle C < m\angle B$ $3) m \angle A > m \angle B$

2) $m\angle B = m\angle A$

4) $m\angle A = m\angle C$

b) Find mZTGR. $m\angle STG = x + 10$; $m\angle SGT = 6x$ 10. TG = TR; $m\angle S = 2x - 10$; a) Find $m \angle S$.

d) Find SR. Let GT = 3y + 6 and TR = 5y - 8. c) Find TR.



answers All Rights Reserved OMathBits.com

2

10 1, 10 2, 96 3, 40 4. 32 5. 50 6.(4) 7. 96 8. 104 9. (4) 10. a)30 b)60 c)27 d)54

4. $\triangle DEG$ and $\triangle EGF$ are isosceles. $m\angle EDG = 64^{\circ}$ Find mZGEF. measure of one of its base angles. How many 3. The vertex angle of an isosceles triangle measures 20 degrees more than twice the degrees are there in a base angle of this

All Rights Reserved @MathBits.com