Unit 2 Transformations and RIGID MOTIONS

Summary Sheet

1. Pre-image: the shape that you start with.
2. Image: The new shape after the mapping (transformation) takes place.
3. A TRANSFORMATION is like a one-to -one function from algebra. A ONE TO ONE

FUNCTION is when there is exactly the same number of elements in the domain as there is in the range. A transformation in geometry is when you have the same number of points in the pre-image as in the image.
1 Example of Transformation

4. An ISOMETRIC TRANSFORMATION or RIGID MOTION is a transformation that results in an image that is CONGRUENT to the pre-image.

- PRESERVED: Distances, angle measures, parallelism, colinearity,

5. Orientation is the direction (clockwise/counterclockwise) in which the vertices are lettered.

- Direct Isometry is when orientation is preserved from pre-image to image.

6. TYPES OF ISOMETRIC TRANSFORMATIONS:

- Opposite Isometry is when orientation is reversed from pre-image to image. LINE REFLECTIONS REVERSE ORIENTATION!
a. Line Reflections: Always Reverses Orientation (AKA Opposite Isometry)

- $r_{x \text {-axis }}(x, y) \rightarrow(x,-y)$
- $r_{y \text {-axis }}(x, y) \rightarrow(-x, y)$
- $r_{y=x}(x, y) \rightarrow(y, x)$
- $r_{y=-x}(x, y) \rightarrow(-y,-x)$

- reflection in any other line, graph and count!

Points on line of reflection are INVARIANT
Pre-image to Image PATHS are: Parallel, Not Equal.

You can always count the number of spaces (perpendicular to the line of reflection) and then continue that number of spaces to your image point.

$$
\begin{aligned}
& x=\# \text { is a VERTICAL LINE } \\
& y=\# \text { is a HORIZONTAL LINE }
\end{aligned}
$$

b. Point Reflections: Same as a rotation of 180°. Always PRESERVES Orientation.
(AKA Direct Isometry)

- $r_{\text {origin or }} r_{0}(x, y) \rightarrow(-x,-y)$
- reflection in any other point, graph and count!

Point of reflection should be the midpoint between the
pre-image and image.

Rotations: Always PRESERVES orientation.
(AKA Direct Isometry)
Positive rotations Counter Clockwise
Negative rotations Clockwise
$\begin{array}{ll}- & \mathrm{R}_{0,90}(x, y) \rightarrow(-y, x) \\ - & R_{0,180}(x, y) \rightarrow(-x,-y) \\ - & R_{0,270}(x, y) \rightarrow(y,-x)\end{array}$
Points on center of rotation are INVARIANT
Pre-image to Image PATHS are: NOT Parallel, Not Equal. CLOCKWISE

You can always count the number of spaces (to the point of reflection) and then continue that number of spaces to your image point.

You can always rotate your paper and note the new coordinates. Then return your paper to the normal position and plot the image point.

Equivalent Rotations: example R_{90} is equivalent to R_{-270}. The images will be in the same location!
d. Translations: Always Direct Isometry.

- $\quad T_{a, b}(x, y) \rightarrow(x+a, y+b)$
- $\langle a, b>$ is vector notation for a translation.

NO Invariant Points
Pre-image to Image PATHS are: Parallel, Equal

You can always count the translation.
$x+\#$ moves RIGHT
x - \# moves left
Y + \# moves UP
y - \# moves DOWN
7. SYMMETRY:
a. Line Symmetry (reflectional symmetry) A set of points has line symmetry if and only if there is a

b. Rotational Symmetry An object has rotational symmetry if there is a center point around which the object is turned (rotated) a certain number of degrees and the object looks the same.

- Regular Polygons $\frac{360}{\# \text { of sides }}=$ degree of rotational symmetry

- Order The number of positions in which the object looks unchanged.

Example of Order 4

c. Point Symmetry: exists when a figure is built around a single point called the center of the figure. For every point in the figure, there is another point found directly opposite it on the other side of the center.

> A simple test to determine whether a figure has point symmetry is to turn it upside-down and see if it looks the same. A figure that has point symmetry is unchanged in appearance by a 180 degree rotation.
8. Quadrants

