Similar Triangles

Summary

- 1. Two figures are similar if:
 - a. corresponding angles are congruent
 - b. corresponding sides are proportional

$$\frac{6}{9} = \frac{4}{6} = \frac{3}{4.5} = \frac{2}{3}$$

- 2. Properties of Similar Figures
 - a. Corresponding angles always in a 1:1 ratio
 - b. Ratio of perimeters EQUALS the ratio of corresponding sides
 - c. Ratio of areas is equal to the SQUARE of the ratio of corresponding sides

3. Side Splitter Theorem:

If a line is parallel to a side of a triangle and intersects the other two sides, then this line divides those two sides proportionally.

THE CONVERSE IS ALSO TRUE

If a line intersects two sides of a triangle and divides the sides proportionally, then this line is parallel to the third side.

Proportion involving pieces of sides

$$\frac{CD}{DA} = \frac{CE}{EB}$$

Proportions involving WHOLE sides

$$\frac{\text{CD}}{\text{CA}} = \frac{\text{CE}}{\text{CB}}$$
 OR $\frac{\text{DA}}{\text{CA}} = \frac{\text{EB}}{\text{CB}}$

4. Altitude to Hypotenuse

5. Proving Triangles Similar

a. AA – Two angles of one triangle are congruent to the corresponding angles of another.

b. SAS – Two sets of corresponding sides are proportional and the corresponding included angles are congruent.

c. SSS – Three pairs of corresponding sides are proportional

6. TWO COLUMN Similar Triangle proof (last lines)

Statement	Reason
$\triangle ABC \sim \triangle EFH$	$AA \cong AA$
$\frac{AB}{EF} = \frac{AC}{EH}$	Corresponding sides of similar triangles are in proportion
$AB \cdot EH = EF \cdot AC$	In a Proportion, the product of the means = the product of the extremes.