Right Triangles Summary

1. Pythagorean Theorem:

Use when you know 2 sides OF A RIGHT TRIANGLE Asked to find the length of $3^{\text {rd }}$ side.

$a^{2}+b^{2}=c^{2}$
c must be hypotenuse.

There are limes when being almost right just isn't good enough.

Triples:
3, 4, 5
5, 12, 13
7, 24, 25
8, 15, 17

2. Special Right Triangles

Backwards $\div \sqrt{2}$ then rationalize

- Look for 45, 45,90 in a square with a diagonal

Backwards $\div \sqrt{3}$ then rationalize
-Look for 30, 60, 90 in an equilateral triangle with altitude, rhombus with 60° or 120° angle, isosceles triangle with 120° angle

Rationalizing means to multiply numerator and denominator by $\sqrt{ }$.
You do that when there is a radical in the denominator.
3. Trigonometry $S \frac{O}{H} C \frac{A}{H} T \frac{O}{A}$

- Use when you know 2 or 3 sides OF A RIGHT TRIANGLE
- asked to find the measure of an acute angle. $\left(\sin ^{-1}, \cos ^{-1}, \tan ^{-1}\right)$
- Use when you know 1 side and 1 angle OF A RIGHT TRIANGLE
- asked to find another side

Finding a side:
x in numerator: cross multiply
x in denominator: cross multiply then divide

Finding an angle:

Us

$2^{\text {nd }} \sin$	$\left(\sin ^{-1}\right)$
$2^{\text {nd }} \cos$	$\left(\cos ^{-1}\right)$
$2^{\text {nd }} \tan$	$\left(\tan ^{-1}\right)$

4. Double Right Triangles

Case 1: YOU HAVE A FULL SIDE OF A RIGHT TRIANGLE
Use 2 right triangles (the small one and the whole) and then SUBTRACT LENGTHS

Case 2: You do not have ANY full sides of a right triangle

- In NON-RIGHT TRIANGLE, use law of sines to find side of the right triangle
- Find all angles $1^{\text {st }}$ (use linear pairs and triangles)
- $\frac{a}{\sin A}=\frac{b}{\sin B}$
- Now that you have a side of the RIGHT TRIANGLE, hop into the right triangle and use $\boldsymbol{S} \frac{\boldsymbol{O}}{\boldsymbol{H}} \boldsymbol{C} \frac{\boldsymbol{A}}{\boldsymbol{H}} \boldsymbol{T} \frac{\boldsymbol{O}}{\boldsymbol{A}}$ to find the final answer that you are looking for.

5. Cofunctions \sin and cos have EQUAL VALUES when angles are COMPLEMENTARY (add to 90)

$\sin A=\cos C$
$\cos A=\sin C$

If x is part of the angle:
If x is part of the value of the function:

Add to 90
Set =

