In \triangle CED as shown below, points A and B are located on sides CE and ED, respectively. Line segment AB is drawn such that AE = 3.75, AC = 5, EB = 4.5, and BD = 6.

Explain why \overline{AB} is parallel to \overline{CD} .

A A EB ~ A CED because SAS. The sides are proportional 20 4 they share LE: Therefore 21.

In parallelogram ABCD, diagonals AC and BD intersect at E. Which statement does not prove ABIICD parallelogram ABCD is a rhombus?

- 1) AC ≅ DB
- 2) $AB \cong BC$
- 3) AC L DB
- 4) AC bisects \(\alpha DCB \)

1)

22.

Triangles RST and XYZ are drawn below. If RS = 6, ST = 14, XY = 9, YZ = 21, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZ$? Justify your answer.

$$\frac{6}{9} = \frac{2}{3}$$
 $\frac{14}{21} = \frac{2}{3}$

Yes, ARST~ DXYZ because of SAS. sides are proportional of I congruent angle 19. In the diagram below, ABCD is a parallelogram, AB is extended through B to E, and CE is drawn.

If $\overrightarrow{CE} \cong \overrightarrow{BE}$ and $m\angle D = 112^{\circ}$, what is $m\angle E$?

Using the information given below, which set of -triangles can not be proven similar?

23. On the graph below, point A(3,4) and \overline{BC} with coordinates B(4,3) and C(2,1) are graphed.

What are the coordinates of B' and C' after \overline{BC} undergoes a dilation centered at point A with a scale factor of 2?

- (1) B'(5,2) and C'(1,-2)
 - 2) B'(6,1) and C'(0,-1)
 - 3) B'(5,0) and C'(1,-2)
 - 4) B'(5,2) and C'(3,0)

25.

The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?

- 1) 2AB = AD
- 2) $\overline{AD} \perp \overline{DE}$
- 3) AC = CE
- 4) BC | DE

24. The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is (8,-3). Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

26.

In the diagram below, $\triangle ABC \cong \triangle DEF$.

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

- a reflection over the x-axis followed by a translation
- 2) a reflection over the y-axis followed by a translation
 - a rotation of 180° about the origin followed by a translation
 - 4) a counterclockwise rotation of 90° about the origin followed by a translation