GEOMETRY

Midterm Review Questions

Midterm Review 1 Pages 1-4

Midterm Review 2 Pages 5-9

Midterm Review 3 Pages 10-14

Midterm Review 4 Pages 15-19

Midterm Exam: Thursday, January 25, 2018 8:00-9:30 AM

Room

Be sure to have:

Black/Blue pens
Pencils
Graphing Calculator
Compass
Straight Edge

1. Using a compass and straightedge, construct the angle bisector of ∠ABC shown below. [Leave all construction marks.]

- 2. In $\triangle ABC$, $m\angle A = 3x + 1$, $m\angle B = 4x 17$, and $m\angle C = 5x 20$. Which type of triangle is $\triangle ABC$?
 - 1) right
 - 2) scalene
 - 3) isosceles
 - 4) equilateral
- 3. Determine the scale factor of the given dilation from point O?

4. In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} \cong \overline{DE}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.

Which method can be used to prove $\triangle ABC \cong \triangle DEF$?

- 1) SSS
- 2) SAS
- 3) ASA
- 4) HL

5. If the image of A after a dilation of -2 is A'(-8,6), what are the coordinates of A? Dilation centered at origin

- 1) (4,-3)
- (-4,3)
- 3) (16, -12)
- 4) (-16,12)

6. Find the coordinates of the image of (2,4) under the transformation $r_{x=5}$ ° $T_{<3,-5>}$.

7. A quadrilateral whose diagonals bisect each other and are perpendicular is a

- 1) rhombus
- 2) rectangle
- 3) trapezoid
- 4) parallelogram

8. The vertices of $\triangle RST$ are R(-6,5), S(-7,-2), and T(1,4). The image of $\triangle RST$ after the composition $T_{-2,3} \circ r_{y=x}$ is $\triangle R''S''T''$. State the coordinates of $\triangle R''S''T''$. [The use of the set of axes below is optional.]

9. What is the resulting translation when a figure is reflected $r_{x=4} \circ r_{x=7}$?

10. As shown in the diagram below, $\triangle ABC \sim \triangle DEF$, AB = 7x, BC = 4, DE = 7, and EF = x.

What is the length of \overline{AB} ?

- 1) 28
- 2) 2
- 3) 14
- 4) 4

11. In rhombus ABCD, with diagonals \overline{AC} and \overline{DB} , AD = 10.

If the length of diagonal \overline{AC} is 12, what is the length of \overline{DB} ?

- 1)
- 2) 16
- 3) $\sqrt{44}$
- 4) $\sqrt{136}$
- 12. In the diagram of $\triangle ABC$ below, \overline{AB} is extended to point D.

If $m\angle CAB = x + 40$, $m\angle ACB = 3x + 10$, $m\angle CBD = 6x$, what is $m\angle CAB$?

- 13. True or False: A translation may have invariant points.
- 14. Given: PROE is a rhombus, \overline{SEO} , \overline{PEV} , $\angle SPR \cong \angle VOR$

Prove: $\overline{SE} \cong \overline{EV}$

15. Given: $\triangle ABC$, \overline{BD} bisects $\angle ABC$, $\overline{BD} \perp \overline{AC}$

Prove: $\overline{AB} \cong \overline{CB}$

16. State which type of symmetry each figure has (rotational, reflectional)

17. In the diagram of trapezoid ABCD below, $\overline{AB} \parallel \overline{DC}$, $\overline{AD} \cong \overline{BC}$, $m \angle A = 4x + 20$, and $m \angle C = 3x - 15$.

What is $m \angle D$?

18. Determine the two transformations that map Δ LKO onto Δ BCO.

19. Quadrilateral ABCD with diagonals \overline{AC} and \overline{BD} is shown in the diagram below.

Which information is *not* enough to prove *ABCD* is a parallelogram?

- 1) $\overline{AB} \cong \overline{CD}$ and $\overline{AB} \parallel \overline{DC}$
- 2) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \cong \overline{DA}$
- 3) $\overline{AB} \cong \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$
- 4) $\overline{AB} \parallel \overline{DC}$ and $\overline{BC} \parallel \overline{AD}$

- 20. Which set of statements would describe a parallelogram that can always be classified as a rhombus?
 - I. Diagonals are perpendicular bisectors of each other.
 - II. Diagonals bisect the angles from which they are drawn.
 - III. Diagonals form four congruent isosceles right triangles.
 - 1) I and II
 - 2) I and III
 - 3) II and III
 - 4) I, II, and III

After a composition of transformations, the coordinates A(4,2), B(4,6), and C(2,6) become A''(-2,-1), B''(-2,-3), and C''(-1,-3), as shown on the set of axes below.

What composition of transformations was used? (Dilations + Rotations centred at origin.)

B)
$$D_{\frac{1}{2}} \circ R_{180}$$

C)
$$D_{\frac{1}{2}} \circ R_{90}$$

D)
$$R_{90} \circ D_2$$

2) In isosceles triangle ABC, AB = BC. Which statement will always be true?

$$A)$$
 $m \angle A = m \angle C$

B)
$$m \angle C < m \angle B$$

C)
$$m\angle A > m\angle B$$

D)
$$m \angle B = m \angle A$$

3) In the diagram below of $\triangle AGE$ and $\triangle OLD$, $\angle GAE \cong \angle LOD$, and $\overline{AE} \cong \overline{OD}$.

To prove that $\triangle AGE$ and $\triangle OLD$ are congruent by SAS, what other information is needed?

A)
$$\angle AGE \cong \angle OLD$$

B)
$$\overline{AG} \cong \overline{OL}$$

D)
$$\overline{GE} \cong \overline{LD}$$

4) Based on the diagram below, which of the following statements is true?

A) b | c

B) $a \parallel c$

C) $a \parallel b$

- D) d11 e
- 5) In the diagram below of parallelogram STUV, SV = x + 3, VU = 2x 1, and TU = 4x 3.

What is the length of \overline{SV} ?

A) 4

B) 7

C) 2

D) 5

- 6) If $\triangle ABC \sim \triangle ZXY$, $m \angle A = 50^{\circ}$, and $m \angle C = 30^{\circ}$, what is $m \angle X$?
 - A) 30°

B) 80°

C) 100°

- D) 50°
- In the diagram below, the length of the legs \overline{AC} and \overline{BC} of right triangle ABC are 6 cm and 8 cm, respectively. Altitude \overline{CD} is drawn to the hypotenuse of $\triangle ABC$.

"What is the length of \overline{AD} to the nearest tenth of a centimeter?

A) 4.0

B) 3.6

C) 6.4

D) 6.0

In the diagram below of parallelogram ABCD with diagonals \overline{AC} and \overline{BD} , $m \angle 1 = 45^{\circ}$ and $m \angle DCB = 120^{\circ}$.

What is the measure of ∠2?

A) 60°

B) 30°

C) 45°

D) 15°

The pentagon in the diagram below is formed by five mys.

Sum of interior angles of a polygon found using formula

180 (#ofsides -2)

What is the degree measure of angle x?

A) 108°

C) 112°

10) What is the image of point A(4,2) after the composition of transformations defined by $R_{90} \circ r_{y=x}$? (Rotation centered at

B) (-4,-2)

C) (4,-2)

- D) (2,-4)
- origin)

In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{AB} = \overline{DE}$, $\angle A = \angle D$, and $\angle B = \angle E$. 11)

Which method can be used to prove $\triangle ABC = \triangle DEF$?

A) IIL

B) SSS

C) ASA

D) SAS

1960 - I - Pa

12) In the diagram below of $\triangle ACD$, E is a point on \overline{AD} and B is a point on \overline{AC} , such that $\overline{EB} \parallel \overline{DC}$. If AE = 3, ED = 6, and DC = 15, find the length of \overline{EB} . [Show all work.]

In the diagram below, quadrilateral STAR is a rhombus with diagonals \overline{SA} and \overline{TR} intersecting at E. ST = 3x + 30, SR = 8x - 5, SE = 3z, TE = 5z + 5, AE = 4z - 8, $m\angle RTA = (5y - 2)^{\circ}$, and $m\angle TAS = (9y + 8)^{\circ}$. Find SR, RT, and $m\angle TAS$. [Show all work.]

- 14)
- a) $r_n(D) = \underline{\hspace{1cm}}$
- $b) r_m(E) = \underline{\hspace{1cm}}$

- c) $r_m(G) = \underline{\hspace{1cm}}$
- d) $r_s(\underline{}) = H$
- minimum

 15) What is the angle of rotational symmetry for a regular decagon?
 - a) 18°
- b) 36°
- c) 45°
- d) 72°

16) Perform the following construction

 $D_{0,-1}(\Delta ABC)$

- 17) If \overline{OB} bisects < DOG, and $< DOB = 44^{\circ}$, then the m < FOD =
 - 1) 88
- 2) 92
- 3) 44
- 4) 180

1. Using a compass and straightedge, construct an equilateral triangle with \overline{AB} as a side. Using this triangle, construct a 30° angle with its vertex at A. [Leave all construction marks.]

2. This shape has:

Midterm Review #3

- 1) Only Rotational Symmetry
- 3) Both Rotational & Reflectional Symmetries
- 2) Only Reflectional Symmetry
- 4) Neither symmetry
- 3. Determine the scale factor of the given dilation from point O?

- 4. In the diagram of $\triangle ABC$ and $\triangle DEF$ below, $\overline{BC} \cong \overline{EF}$, $\angle A \cong \angle D$, and $\angle B \cong \angle E$.
 - Which method can be used to prove $\triangle ABC \cong \triangle DEF$?
 - 1) AAS
 - 2) SAS
 - 3) ASA
 - 4) HL

- 5. If the image of A after a dilation of $\frac{1}{2}$ is A'(-2,3), what are the coordinates of A?

 1) (-1,1.5)

 (Centered at Origin)

 - 2) (-4,6)
 - 3) (4,-6)
 - 4) (1,-1.5)

- 6. A double reflection over y = -3 followed by y = -1, translates all points:
 - 1) up 4 units
 - 2) down 4 units
 - 3) up 8 units
 - 4) down 8 units
- 7. Which figure does not always have congruent diagonals?
 - 1) square
 - 2) rhombus
 - 3) rectangle
 - 4) isosceles trapezoid
- 8. The coordinates of $\triangle JRB$ are J(1,-2), R(-3,6), and B(4,5). State the coordinates of the vertices of its image after the transformation $T_{2,-1} \circ r_{y-axis}$?
- 9. What is the image of point (1,1) under $r_{x-axis} \circ R_{0,90}$?
 - 1) (1,1)
 - 2) (1,-1)
 - 3) (-1,1)
 - 4) (-1,-1)
- 10. In the diagram of $\triangle ABC$: \overline{AFB} , \overline{AEC} , $\overline{AC} \perp \overline{CB}$, $\overline{AE} \perp \overline{EF}$, BF = 8, FA = 12, FE = 9, and BC = x. What is the value of x?
 - 1) 3
 - 2) 5.4
 - 3) 6
 - 4) 15

- 11. In rhombus ABCD, with diagonals AC and $D\overline{B}$, If the length of diagonal \overline{AC} is 10 and the length of diagonal \overline{DB} is 24, what is the perimeter of ABCD?
 - 1) 26
 - 2) 104
 - 3) 13
 - 4) 52

12. In $\triangle ABC$, $m\angle A = 3x + 1$, $m\angle B = 4x - 17$, and $m\angle C = 5x - 20$. Which type of triangle is $\triangle ABC$?

- 1) right
- 2) scalene
- 3) isosceles
- 4) equilateral

13. True or False: A rotation may have invariant points.

14. In the diagram below, $\triangle ABC$ is shown with \overline{AC} extended through point D.

If $m\angle BCD = 6x + 2$, $m\angle BAC = 3x + 15$, and $m\angle ABC = 2x - 1$, what is the value of x?

- 1) 12
- 2) $14\frac{10}{11}$
- 3) 16
- 4) $18\frac{1}{9}$

15. In the diagram of trapezoid ABCD below, $\overline{AB} \parallel \overline{DC}$, $\overline{AD} \cong \overline{BC}$, m < A = 12x - 4, and m < C = 4x.

Find: x

16. Determine two similarity transformations that would map Quad. OKBC onto Quad. OHTR.

17. Given: $\triangle ABC$, \overline{BD} bisects AC, $\overline{BD} \perp \overline{AC}$ Prove< $C \cong A$

18. In \triangle CED as shown below, points A and B are located on sides \overline{CE} and \overline{ED} , respectively. Line segment AB is drawn such that AE = 3.75, AC = 5, EB = 4.5, and BD = 6.

Explain why \overline{AB} is parallel to \overline{CD} .

20 - ...

In parallelogram ABCD, diagonals \overline{AC} and \overline{BD} intersect at E. Which statement does not prove parallelogram ABCD is a rhombus?

- 1) $\overline{AC} \cong \overline{DB}$
- 2) $\overline{AB} \cong \overline{BC}$
- 3) <u>AC</u> ⊥ <u>DB</u>
- 4) AC bisects ∠DCB
- Triangles RST and XYZ are drawn below. If RS = 6, ST = 14, XY = 9, YZ = 21, and $\angle S \cong \angle Y$, is $\triangle RST$ similar to $\triangle XYZ$? Justify your answer.

22.

19. <u>In the diagram below, ABCD is a parallelogram,</u>

<u>AB</u> is extended through B to E, and <u>CE</u> is drawn.

If $\overline{CE} \cong \overline{BE}$ and $m\angle D = 112^\circ$, what is $m\angle E$?

- 1) 44
- 2) 56°
- 3) 68°
- 4) 112°
- Using the information given below, which set of triangles can *not* be proven similar?

2)

23. On the graph below, point A(3,4) and \overline{BC} with coordinates B(4,3) and C(2,1) are graphed.

What are the coordinates of B' and C' after \overline{BC} undergoes a dilation centered at point A with a scale factor of 2?

- 1) B'(5,2) and C'(1,-2)
- 2) B'(6,1) and C'(0,-1)
- 3) B'(5,0) and C'(1,-2)
- 4) B'(5,2) and C'(3,0)

25.

The image of $\triangle ABC$ after a dilation of scale factor k centered at point A is $\triangle ADE$, as shown in the diagram below.

Which statement is always true?

- $1) \quad 2AB = AD$
- 2) $\overline{AD} \perp \overline{DE}$
- 3) AC = CE
- 4) $\overline{BC} \parallel \overline{DE}$

^{24.} The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is (8,-3). Explain your answer. Is $\triangle DEF$ congruent to $\triangle A'B'C'$? Explain your answer.

26. In the diagram below, $\triangle ABC \cong \triangle DEF$.

Which sequence of transformations maps $\triangle ABC$ onto $\triangle DEF$?

- a reflection over the x-axis followed by a translation
- 2) a reflection over the y-axis followed by a translation
- 3) a rotation of 180° about the origin followed by a translation
- 4) a counterclockwise rotation of 90° about the origin followed by a translation

NAME: GEOMETRY CC-Midterm Review

DATE: ______PERIOD: _____

1) Line n intersects lines ℓ and m, forming the angles shown in the diagram below.

Which value of x would prove $l \parallel m$?

A) 4.5

B) 8.75

C) 2.5

D) 6.25

2) As shown in the diagram below, \overline{AC} bisects $\angle BAD$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle ABC \cong \triangle ADC$?

A) SAS

B) AAS

C) AAA

- D) SSS
- 3) In parallelogram ABCD, $m\angle B = (4x + 4)^{\circ}$ and $m\angle D = (74 x)^{\circ}$. Find $m\angle C$.

4) Which expression best describes the transformation shown in the diagram below?

- A) same orientation; reflection in line
- B) opposite orientation; reflection in line
- C) opposite orientation; translation
- D) same orientation; translation
- As shown in the diagram below, the diagonals of parallelogram QRST intersect at E. If $QE = x^2 + 6x$, SE = x + 14, and TE = 6x 1, determine TE algebraically. [Show all work.]

- 6) If the vertex angles of two isosceles triangles are congruent, then the triangles must be
 - A) acute

B) right

- C) similar
- D) congruent
- 7) In isosceles triangle DOG, the measure of the vertex angle is three times the measure of one of the base angles. Which statement about ΔDOG is true?
 - A) \triangle DOG is a right triangle.

C) \triangle DOG is an obtuse triangle.

B) \triangle DOG is an acute triangle.

D) ADOG is a scalene triangle.

- 8) What is the image of A(8,2) under R900? (Centered at origin)
 - A) (-8,2)
- B) (-2,8)
- C) (8,-2)
- D) (2,8)
- 9) In the accompanying diagram, $\overline{ABC} \parallel \overline{DE}$, $m \angle FDE = 25^{\circ}$, $m \angle DFE = 130^{\circ}$, and $m \angle ABD = x^{\circ}$.

What is the value of x?

10) In the diagram below, $\triangle ABC \cong \triangle DEF$.

Complete the statement $\angle DFE \cong \underline{?}$.

- A) ∠CAB
- B) ∠CBA
- C) ∠ABC
- D) ∠ACB
- Right triangle ABC has a right angle at C, altitude \overline{CD} is drawn, AC = 10, and AB = 20. What is the length of \overline{AD} ?
 - A) 2

B) 40

C) $\sqrt{200}$

D) 5

12) In the diagram below of $\triangle ADE$, B is a point on \overline{AE} and C is a point on \overline{AD} such that $\overline{BC} \parallel \overline{ED}$, AC = x - 3, BE = 20, AB = 16, and AD = 2x + 2. Find the length of \overline{AC} . [Show all work.]

13) In the diagram below, PQRS is a rhombus with diagonals \overline{PR} and \overline{SQ} .

If $m\angle SPQ = (8x - 14)^{\circ}$ and $m\angle 1 = (3x + 3)^{\circ}$, find the value of x.

minimum

- 14) What is the angle of rotational symmetry for a Regular pentagon?
 - 1) 120

2) 72

3) 90

4) 108

- 15) If \overline{AB} bisects $\angle CAF$, and m $\angle CAB = 54^{\circ}$, then the $m\angle DAC =$
 - 1) 27° 2) 54°
- 3) 72°
- 4) 108°

- 16) Determine the name of the point that meets the given conditions.
 - a) $r_m(B) = _____$ b) $r_{FC}(C) = _____$
 - c) $r_h(A) = ____$ d) $r_{AD} (____) = C$

 - e) $r_n(D) = ____$ f) $r_m(E) = _____$

17) Use a compass and a straightedge to construct $D_{0,3}$ ($\triangle ADB$)

