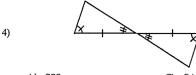

D ~C	Statement	Reason
Prove: $\triangle ABE \cong \triangle CDF$	1) AE L DB CF L DB DE = FB DC = AB	Reason 1) Given

B ^	Statement	Reason
Prove: $\triangle ABE \cong \triangle CBD$	Statement 1) $\overline{BD} \cong \overline{BE}$ $\angle A \cong \angle C$	Reason 1) Given

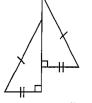
10. **Given:** $\overline{CA} \perp \overline{AB}; \overline{ED} \perp \overline{DF}; \overline{ED} \parallel \overline{AB};$

 $\overline{CE}\cong \overline{BF}; \overline{AB}\cong \overline{ED};$


Which method can NOT be used to prove: $\Delta ABC \cong \Delta DEF$

Choose:

- \circ SSS
- \circ SAS
- \bigcirc AAS
- O HL

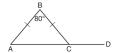

What is the congruence correspondence, if any, that will prove the given triangles congruent?

- A) SSS
- B) ASA
- C) SAS D) none

5)

6)

- A) HL
- B) SAS
- C) AAS
- D) none
- X ** X
- A) SAS
- B) AAS
- C) SSA
- D) none


- 10) Which set of numbers could be the lengths of the sides of a triangle?
 - A) {5,5,11}
- C) {6,7,13}
- B) {12,13,20}
- D) {3,6,9}

- 11) If the length of two sides of a triangle are 7 and 10, the length of the third side may be
 - A) 2
- B) 3
- C) 1
- D) 4

In $\triangle JKL$, $\overline{JL} \cong \overline{KL}$. If $m\angle J = 58$, then $m\angle L$ is

- 1) 61
- 2) 64
- 3) 116
- 4) 122

In the diagram below of isosceles $\triangle ABC$, the measure of vertex angle B is 80°. If \overline{AC} extends to point D, what is $m \angle BCD$?

- 1) 50 2) 80 3) 100 4) 130

Which set of numbers represents the lengths of the sides of a triangle?

- 1) {5, 18, 13}
- 2) {6,17,22}
- 3) {16, 24, 7}
- 4) {26, 8, 15}

In $\triangle PQR$, PQ=8, QR=12, and RP=13. Which statement about the angles of $\triangle PQR$ must be true?

1) $m\angle Q > m\angle P > m\angle R$ 2) $m\angle Q > m\angle P > m\angle P$ 3) $m\angle R > m\angle P > m\angle Q$ 4) $m\angle P > m\angle R > m\angle Q$